US009311356B2

a2z United States Patent (10) Patent No.: US 9,311,356 B2
Weyerhaeuser et al. (45) Date of Patent: *Apr. 12,2016
(54) DATABASE CALCULATION ENGINE (56) References Cited

(75) Inventors: Christoph Weyerhaeuser, Heidelberg U.S. PATENT DOCUMENTS

(DE); Daniel Baeumges, Viersen (DE); 5,870,759 A * 2/1999 Bauer ... GO6F 17/30578
Tobias Mindnich, Walldorf (DE); 707/999.004
Thomas Legler, Walldorf (DE) 6,330,286 Bl * 12/2001 Lyons HO4N 21/23406
375/240.26
. 6,609,123 B1* 82003 Cazemier et al.
(73) Assignee: SAP SE, Walldorf (DE) 6,842,006 B1* 1/2005 Bowman-Amuah 719/330
8,538,916 B1* 9/2013 Alfonseca GO6F 17/30734
(*) Notice: Subject to any disclaimer, the term of this 707/603
patent is extended or adjusted under 35 8,983,898 B1* 3/2015 Alfonseca GO6F 17/30/707
707/603
U.8.C. 154(b) by 67 days. 9,092,579 B1* 7/2015 Cohen GOGF 11/3688
This patent is subject to a terminal dis- 9,104,815 B1* 82015 Cohen GOGF 11/3692
claimer 2003/0120567 Al* 6/2003 Macklinccooovvveenrnns 705/35
: 2006/0106656 Al1* 52006 Ouimetoovvvvvreenrrnn. 705/7
2011/0035803 Al* 2/2011 Lucangeli Obes ... GOG6F 21/577
(21) Appl. No.: 13/463,698 726/25

2011/0074670 Al* 3/2011 Teeganetal. 345/156

N ~ga]
(22) Filed: May 3, 2012 2012/0162265 Al 6/2012 Heinrich et al. 345/661
* cited by examiner
(65) Prior Publication Data Primary Examiner — Pavan Mamillapalli
US 2012/0221549 A1 Aug. 30,2012 (74) Attorney, Agent, or Firm — Mintz Levin Cohn Ferris
’ Glovsky and Popeo, P.C.
(57) ABSTRACT
Related U.S. Application Data A select query or a data referencing a calculation scenario is

(63) Continuation of application No. 12/914,445, filed on received by a Qatabase server from a remote apphcatlpn
Oct. 28, 2010, now Pat. No. 8,195,643, server. The specified calculation scenario is one of a plurality

of calculation scenarios and it defines a data flow model that
includes one or more calculation nodes. Each calculation

(51) Int.CL node defines one or more operations to execute on the data-
P
GO6F 17/30 (2006.01) base server. Thereafter, the database server instantiates the
GO6F 7/00 (2006.01) specified calculation scenario and executes the operations
(52) US.CL defined by the calculation nodes of the instantiated calcula-
CPC oo, GO6F 17/30463 (2013.01) tion scenario to result in a responsive data set. This data set is
(58) TField of Classification Search then provided by the database server to the application server.
CPC oo GO6F 17/30392 Related apparatus, systems, techniques and articles are also
USPC oo 707/713 ~ described.
See application file for complete search history. 19 Claims, 7 Drawing Sheets
@ B}
i i 1 b o
Calculation Model
((Data Frolw Graph) j
Calc Engine + [~ 520
Sa [Modsl Optimizer (Rule Base) |-522
&3 2
| Model Executor ‘
_oF 5
. Logical

R Executon

AN 500

Physical
Execution
Plan

Intermediate
Database Executor ‘
o} o}
Column Store

U.S. Patent Apr. 12,2016 Sheet 1 of 7

RECEIVE DATA 110
SPECIFYING -

CALCULATION
SCENARIO

\ 4

INSTANTITATE 120

CALCULATION
SCENARIO

A

EXECUTE OPERATIONS 130
DEFINED BY -

CALCULATION NODES IN

CALCULATION SCENARIO

100

y
PROVIDE 140

RESULTING
DATA SET

FIG. 1

US 9,311,356 B2

U.S. Patent Apr. 12,2016 Sheet 2 of 7 US 9,311,356 B2

/CaIcEngine Layer 214\ CView)
., ;) |- 210
CView f :
: CView ||/ 212 || CView
i 3 || 213
N\ \
%
/Logical Layer 299 | A
223\ 224 | 99
(Cube |/ (v
Cube ||/ 221 . C
A Join
>
i m]
e | L0
1 2 n
Y !) .
{ { ((
231 232 233 234
200 " |

FIG. 2

US 9,311,356 B2

Sheet 3 of 7

Apr. 12,2016

U.S. Patent

0€€ ~

(sole)s
00€
(onpos)d 4
(1es) A
o| (ewosn)y |
«2qnossjes”
de
oer| S0
N~
(seles)ANS = ssfes
(onpos)d (saleS)NNS = siejoL
(1e0) A B NOILYOTHO9Y :uojesedo
(towojsn)) B 075 «NOSIEIOL” AD
NOILYDIY9O9Y :uojessdo i
«\JS31eS“ AD
)
S|e1o] / soes =: oley g
soleS
s|ejoL
(tonpos)d By
(o)A BY
(Jswaysn)) B
ADS®[eS ‘ADS[eI0L NIOrSSOYO :toneiado
0ye ~] «NJ01BY" AD

US 9,311,356 B2

Sheet 4 of 7

Apr. 12,2016

U.S. Patent

0€€ ~"]

(sefe)s 00v
(1onpos)d <
(1ea)A
q (Jowoisn)y |
«2qn)sales”
de
0le~"] \mm_o]
~
(sales)NS = soles
(3onpoi)d (saleS)WNS = siejoL
BRI NOILYDIHOOYV :uohessdQ
0Z¢ <] =>Ow_NuO.F= AD
NOILYDIHDOY :uojessd) I
«\DS2[es“ AD
A
s|ejo] | s9jes =: oljey
(¥onpou)d
ook
—HouoieR)S
ADS9[ES ‘ADs[EICL NIOrSSO¥O :uohessdQ
0¥E ~ «AJ01eY" AD

U.S. Patent Apr. 12,2016 Sheet 5 of 7 US 9,311,356 B2

Standard Domain Domain Domain Other 0
SQL Specific Specific Specific 505
Statement Language Language Model Language/Mode|

Domain Domain Domain

Specific Specific Specific C(?r%heilrer 510

Compiler Compiler Engine P
Y M * ‘

515
Calculation Model
(Data Flow Graph)
Y]
Calc Engine * 520
saL Model Optimizer (Rule Based) -~ 522
Parser
CE R
Intermediate
Model Executor Results
526
Calc Engine 528
Operators
Logical
R Execution AR
\—O‘w Plan (ﬁ'
Database Optimizer
Physical | R > 500

Execution Qv

Plan
Intermediate

Database Executor F I G 5
of oR

Row Store Column Store

US 9,311,356 B2

Sheet 6 of 7

Apr. 12,2016

U.S. Patent

o { I

<

4

0l

—
©/'

8-019

1D

SSOINAA

Lol A £

¥ND~0 OE=OSIAZ A
v GHE0SIAZ A
JALILVI OUOSIAZ A
HNOHLY OUIOSIAZ A

uIop} g WOl palidxaTaucuARH

uior} Ld™L Tulo pelidxeauou ARH

1SN0 |4 ags uoun gl s
uoisna) 1 peo”Ldol elel o)

Duckif) 1 qeauounajes X AR

LOISITDY (o ego | dof Bied X1 A

owioisn) g 20~ Ldoyajes A8

ol

joofoig

dio suondQ maip ucnoy 103l0d

INNHONINNNAINTLEAS] - 19uBisa(] 0U2ua05 LORRINYES YMA VS

> 0£9

US 9,311,356 B2

Sheet 7 of 7

Apr. 12,2016

U.S. Patent

L 9Old oo~

/')\

%]

-4
douior @

1d~}ujol Byuos~Aoussing 9]qey AUOI LINS A o

P—

T

-4
douor @

0l9

L

/ Ld~¢ uto[BlyuoaAoualing a|qe} AUOY LINI A Sff

+

“\pUE = \JIWIdXIAONIHENDTLADYYLY &L
douogoelold @

-y

pue X, = J0FHIdXT AONIHEND 139uvLY gL

douonosiony @

* -\ pue X, = \IFULIXTTAONIHUND ™ LFOHLY 4
douoooloid ®

Ld paudxsTsamousLInsou A ol

bd]

paJidxe safouanno™yioq A off

Ld palidxe~sapusiino suo A S

" X34dYSA PUB, = \dI31VY X34V I

douonoalo.d (@)

SSOUDXISWALSASY
SSOIOXI A D

ld 2dfysies payjij palidxe sarousiina ou"A Bf]

4

doulor @

[+]

bd 2o zered Xy A S

-

douior @

4]

-4

douer @

Ld "7 urol pandxeauou A off

Jd g7 1ot Xy A O

-4
doucn @

Ud"zo uoun"a1es A o

douon @

-4

Ld A881sn]pe disjel penidxe auou A i

~ -y

a EN

doddowoisny @
Ld 2o Ldoy ejes Xy A B

1]

US 9,311,356 B2

1
DATABASE CALCULATION ENGINE

CROSS REFERENCE TO RELATED
APPLICATION

This application is a Continuation of patent application Ser.
No. 12/914,445, filed on Oct. 28, 2010, entitled “Database
Calculation Engine”, the contents of which are hereby fully
incorporated by reference.

TECHNICAL FIELD

The subject matter described herein relates to a database
calculation engine and the use of calculation scenarios to
execute database queries.

BACKGROUND

Data flow between an application server and a database
server is largely dependent on the scope and number of que-
ries generated by the application server. Complex calcula-
tions can involve numerous queries of the database server
which in turn can consume significant resources in connec-
tion with data transport as well as application server-side
processing of transported data.

SUMMARY

In one aspect, a calculation scenario or a reference to a
calculation scenario is received by a database server from a
remote application server. The specified calculation scenario
is one of a plurality of calculation scenarios and it defines a
data flow model that includes one or more calculation nodes.
Each calculation node defines one or more operations to
execute on the database server. Thereafter, the database server
instantiates the specified calculation scenario and executes
the operations defined by the calculation nodes of the instan-
tiated calculation scenario to result in a responsive data set.
This data set is then provided by the database server to the
application server.

In some implementations, at least a portion of paths and/or
attributes defined by the calculation scenario are not required
to respond to the query. In such cases, the instantiated calcu-
lation scenario omits the paths and attributes defined by the
calculation scenario that are not required to respond to the
query. Inother cases, the entire calculation scenario is utilized
and no paths or attributes are removed.

At least one of the calculation nodes can filter and/or sort
results obtained from the database server prior to transmis-
sion of the result set. The calculation scenario can be instan-
tiated in a calculation engine layer by a calculation engine.
The calculation engine layer can interact with a physical table
pool and a logical layer. The physical table pool can comprise
physical tables containing data to be queried and the logical
layer can define a logical metamodel joining at least a portion
of the physical tables in the physical table pool. An input for
each calculation node can comprise one or more of: a physical
index, alogical index (e.g., join index, OLAP index, etc.), and
another calculation node. Each calculation node can have at
least one output table that is used to generate the final result
set. At least one calculation node can consume an output table
of another calculation node.

The executing can comprise forwarding the query to a
calculation node in the calculation scenario that is identified
as a default node if the query does not specify a calculation
node at which the query should be executed. In other cases,

10

15

20

25

30

35

40

45

50

55

60

2

the query identifies a particular calculation node and the
query is forwarded to such node for execution.

The calculation scenario can comprises database metadata.
The calculation scenario can be exposed as a database calcu-
lation view. The executing can comprise invoking, by a SQL
processor, a calculation engine to execute the calculation
scenario behind the database calculation view. The calcula-
tion engine can invoke the SQL processor for executing set
operations and SQL nodes and on the other hand the SQL
processor invokes the calculation engine when executing
SQL queries with calculation views.

Articles of manufacture are also described that comprise
computer executable instructions permanently stored on
computer readable media (e.g., non-transitory media, etc.),
which, when executed by a computer, causes the computer to
perform operations herein. Similarly, computer systems are
also described that may include at least one processor and a
memory coupled to the processor. The memory may tempo-
rarily or permanently store one or more programs that cause
the processor to perform one or more of the operations
described herein. For example, a system can include a data-
base server and an application server (with each having at
least one corresponding computer system including at least
one processor and memory).

The subject matter described herein provides many advan-
tages. For example, in a combined environment with a data-
base server and an application server, at execution time of a
query, there can be several roundtrips of data between such
servers. The current subject matter, by providing intermediate
results at the database server, greatly reduces the amount of
data transported to the application server.

The details of one or more variations of the subject matter
described herein are set forth in the accompanying drawings
and the description below. Other features and advantages of
the subject matter described herein will be apparent from the
description and drawings, and from the claims.

DESCRIPTION OF DRAWINGS

FIG. 1 is a process flow diagram illustrating a method of
querying a database using a calculation scenario; and

FIG. 2 is a diagram illustrating a calculation engine layer,
a logical layer, a physical table pool and their interrelation-
ship;

FIG. 3 is a diagram illustrating a first instantiation of a
calculation scenario;

FIG. 4 is a diagram illustrating a second instantiation of a
calculation scenario;

FIG. 5 is a diagram illustrating an architecture for process-
ing and execution control;

FIG. 6 is a diagram of a graphical user interface illustrating
a dunning calculation scenario; and

FIG. 7 is a diagram showing a portion of the dunning
calculation scenario of FIG. 6.

Like reference symbols in the various drawings indicate
like elements.

DETAILED DESCRIPTION

FIG. 1 is a process flow diagram 100 illustrating a method
in which, at 110, a calculation scenario or a reference to a
calculation scenario (e.g., a select query referencing the cal-
culation scenario, etc.) is received by a database server from
a remote application server. The specified calculation sce-
nario is one of a plurality of calculation scenarios and it
defines a data flow model that includes one or more calcula-
tion nodes. Each calculation node defines one or more opera-

US 9,311,356 B2

3

tions to execute on the database server. Thereafter, at 120, the
database server instantiates the specified calculation scenario
and, at 130, executes the operations defined by the calculation
nodes of the instantiated calculation scenario to result in a
responsive data set. This data set is then provided, at 140, by
the database server to the application server.

The subject matter described herein can enable an applica-
tion developer to define a data flow model to push down a high
level algorithm to a database. A developer can define a cal-
culation scenario which describes this algorithm in a general
way as data flow consisting of calculation nodes. A calcula-
tion node as used herein represents a operation such as a
projection, aggregation, join, union, minus, intersection, and
the like. Additionally, as described below, in addition to a
specified operation, calculation nodes can sometimes be
enhanced by filtering and/or sorting criteria. In some imple-
mentations, calculated attributes can also be added to calcu-
lation nodes.

During query time (i.e., the time in which a database is
queried), the data flow specified by a calculation scenario is
instantiated. During instantiation, the calculation scenario is
compacted to only include queries requirements by removing
useless pathes and attributes (that are not requested) within
the calculation scenario. This compaction reduces calculation
time and also minimizes the total amount of data that must be
processed.

FIG. 2 is a diagram 200 that illustrates a database system in
which there are three layers, a calculation engine layer 210, a
logical layer 220, and a physical table-pool 230. Calculation
scenarios can be executed by a calculation engine which can
form part of a database or which can be part of the calculation
engine layer 210 (which is associated with the database). The
calculation engine layer 210 can be based on and/or interact
with the other two layers, the logical layer 220 and the physi-
cal table pool 230. The basis of the physical table pool 230
consists of physical tables (called indexes) containing the
data. Various tables can then be joined using logical meta-
models defined by the logical layer 220 to form a new index.
For example, the tables in a cube (OLAP index) can be
assigned roles (e.g., fact or dimension tables) and joined to
form a star schema. It is also possible to form join indexes,
which can act like database view in environments such as the
Fast Search Infrastructure (FSI) by SAP AG.

As stated above, calculation scenarios can include indi-
vidual calculation nodes 211-214, which in turn each define
operations such as joining various physical or logical indexes
and other calculation nodes (e.g., CView 4 is a join of CView
2 and CView 3). That is, the input for a calculation node
211-214 can be one or more physical, join, or OLAP indexes
or calculation nodes.

In calculation scenarios, two different representations can
be provided. First, a pure calculation scenario in which all
possible attributes are given. Second, an instantiated model
that contains only the attributes requested in the query (and
required for further calculations). Thus, calculation scenarios
can be created that can be used for various queries. With such
an arrangement, calculation scenarios can be created which
can be reused by multiple queries even if such queries do not
require every attribute specified by the calculation scenario.

Every calculation scenario can be uniquely identifiable by
aname (i.e., the calculation scenario can be a database object
with a unique identifier, etc.). This means, that the calculation
scenario can be queried in a manner similarto a view ina SQL
database. Thus, the query is forwarded to the calculation node
211-214 for the calculation scenario that is marked as the
corresponding default node. In addition, a query can be
executed on a particular calculation node 211-214 (as speci-

10

15

20

25

30

35

40

45

50

55

60

65

4

fied in the query). Furthermore, nested calculation scenarios
can be generated in which one calculation scenario is used as
source in another calculation scenario (via a calculation node
211-214 in this calculation scenario). Each calculation node
211-214 can have one or more output tables. One output table
can be consumed by several calculation nodes 211-214.

FIG. 3 is a diagram 300 illustrating an example of a calcu-
lation scenario that relates a number of sales to total sales.
With conventional arrangements, such a query can be
expressed with several SQL statements but not in a single
statement, because for the calculation of the relation two
aggregations at different aggregation levels are required. To
calculate the number of sales, aggregation is performed by a
requested GroupBY attribute. To calculate the sales total, all
sales need to be aggregated. Previously this required two
separate requests on different SQL view, and the final calcu-
lation had to be performed in the application (as opposed to
database-side).

For this example, that data source is an OLAP cube “Sales-
Cube” 330, which has the three dimensions Customer, Year,
and Product as well as the measure Sales. As stated, this data
source 310 can be entered as a special DataSource node in the
logical layer 220 in the calculation scenario. The DataSource
is now referenced from two calculation nodes. The calcula-
tion node TotalsCV 320 on the left side calculates the sales
total, by simply summing the sales without any GroupBy
attributes. The calculation node SalesCV 330 on the right side
calculates the sales according to the GroupBys. To calculate
their relationship, the two calculation nodes 320, 330 are
joined with each other using a CrossJoin. In the calculation
node RatioCV 340 after the join, all the attributes needed for
the calculation are available and a new calculated attribute
Ratio is provided.

The implementation of FIG. 3 is a general calculation
scenario. That is, if the calculation scenario is queried via a
SQL statement which only requests product as GroupBy
attribute, the model is appropriately instantiated and
executed. FIG. 4 is a diagram 400 illustrating a variation in
which not all of the attributes specified by the calculation
nodes 330, 340 are required. In particular, the ratio calcula-
tion is for sales relative to total sales without regard to cus-
tomer and year. In the instantiation, the unnecessary attributes
Customer and Year are removed from the calculation nodes
RatioCv 340 and SalesCV 330 which accelerates execution of
the results (e.g., the ratio) because less data has to be touched
(i.e., fewer attributes need to be searched/persisted, etc.).

FIG. 5 is a diagram 500 illustrating a sample architecture
for request processing and execution control. As shown in
FIG. 5, artifacts 505 in different domain specific languages
can be translated by their specific compilers 510 into a com-
mon representation called a “calculation scenario” 515 (illus-
trated as a calculation model). To achieve enhanced perfor-
mance, the models and programs written in these languages
are executed inside the database server. This arrangement
eliminates the need to transfer large amounts of data between
the database server and the client application. Once the dif-
ferent artifacts 505 are compiled into this calculation scenario
515, they can be processed and executed in the same manner.
The execution of the calculation scenarios 515 (i.e., calcula-
tion scenarios) is the task of a calculation engine 520.

The calculation scenario 515 can be a directed acyclic
graph with arrows representing data flows and nodes that
represent operations. Each calculation node has a set of inputs
and outputs and an operation that transforms the inputs into
the outputs. In addition to their primary operation, each cal-
culation node can also have a filter condition for filtering the
result set. The inputs and the outputs of the operations can be

US 9,311,356 B2

5

table valued parameters (i.e., user-defined table types that are
passed into a procedure or function and provide an efficient
way to pass multiple rows of data to the application server).
Inputs can be connected to tables or to the outputs of other
calculation nodes. Calculation scenarios 515 can support a
variety of node types such as (i) nodes for set operations such
as projection, aggregation, join, union, minus, intersection,
and (ii) SQL nodes that execute a SQL statement which is an
attribute of the node. In addition, to enable parallel execution,
a calculation scenario 515 can contain split and merge opera-
tions. A split operation can be used to partition input tables for
subsequent processing steps based on partitioning criteria.
Operations between the split and merge operation can then be
executed in parallel for the different partitions. Parallel
execution can also be performed without split and merge
operation such that all nodes on one level can be executed in
parallel until the next synchronization point. Split and merge
allows for enhanced/automatically generated parallelization.
If a user knows that the operations between the split and
merge can work on portioned data without changing the result
he or she can use a split. Then, the nodes can be automatically
multiplied between split and merge and partition the data.

A calculation scenario 515 can be defined as part of data-
base metadata and invoked multiple times. A calculation sce-
nario 515 can be created, for example, by a SQL statement
“ALTER SYSTEM ADD SCENARIO <xml OR json repre-
senting the scenario>". Once a calculation scenario 515 is
created, it can be queried (e.g., “SELECT A, B, C FROM
<scenario name>", etc.). In some cases, databases can have
pre-defined calculation scenarios 515 (default, previously
defined by users, etc.). The calculation scenarios 515 can be
persisted in a repository (coupled to the database server) or in
transient scenarios, the calculation scenarios 515 can be kept
in-memory.

Calculation scenarios 515 are more powerful than tradi-
tional SQL queries or SQL views for many reasons. One
reason is the possibility to define parameterized calculation
schemas that are specialized when the actual query is issued.
Unlike a SQL view, a calculation scenario 515 does not
describe the actual query to be executed. Rather, it describes
the structure of the calculation. Further information is sup-
plied when the calculation scenario is executed. This further
information can include parameters that represent values (for
example in filter conditions). To obtain more flexibility, it is
also possible to refine the operations when the model is
invoked. For example, at definition time, the calculation sce-
nario 515 may contain an aggregation node containing all
attributes. Later, the attributes for grouping can be supplied
with the query. This allows having a predefined generic
aggregation, with the actual aggregation dimensions supplied
at invocation time. The calculation engine 520 can use the
actual parameters, attribute list, grouping attributes, and the
like supplied with the invocation to instantiate a query spe-
cific calculation scenario 515. This instantiated calculation
scenario 515 is optimized for the actual query and does not
contain attributes, nodes or data flows that are not needed for
the specific invocation.

When the calculation engine 520 gets a request to execute
acalculation scenario 515, it can first optimize the calculation
scenario 515 using a rule based model optimizer 522.
Examples for optimizations performed by the model opti-
mizer can include “pushing down” filters and projections so
that intermediate results 526 are narrowed down earlier, or the
combination of multiple aggregation and join operations into
one node. The optimized model can then be executed by a
calculation engine model executor 524 (a similar or the same
model executor can be used by the database directly in some

10

15

20

25

30

35

40

45

50

55

60

65

6

cases). This includes decisions about parallel execution of
operations in the calculation scenario 515. The model execu-
tor 524 can invoke the required operators (using, for example,
acalculation engine operators module 528) and manage inter-
mediate results. Most of the operators are executed directly in
the calculation engine 520 (e.g., creating the union of several
intermediate results). The remaining nodes of the calculation
scenario 515 (not implemented in the calculation engine 520)
can be transformed by the model executor 524 into a set of
logical database execution plans. Multiple set operation
nodes can be combined into one logical database execution
plan if possible.

The calculation scenarios 515 of'the calculation engine 520
can be exposed as a special type of database views called
calculation views. That means a calculation view can be used
in SQL queries and calculation views can be combined with
tables and standard views using joins and sub queries. When
such a query is executed, the database executor inside the
SQL processor needs to invoke the calculation engine 520 to
execute the calculation scenario 515 behind the calculation
view. In some implementations, the calculation engine 520
and the SQL processor are calling each other: on one hand the
calculation engine 520 invokes the SQL processor for execut-
ing set operations and SQL nodes and, on the other hand, the
SQL processor invokes the calculation engine 520 when
executing SQL queries with calculation views.

FIG. 6 is a diagram of a modeling tool 600 rendering a
complex calculation scenario relating to a dunning run
(which is the process of communicating with customers to
ensure the collection of accounts receivable). A company
triggers the dunning run to identify the customers who have
outstanding accounts. To identify these customers a complex
application logical must be execute:

Currency: Not all bills are paid in the same currency, so
each item must be checked if currency conversion is
required and the currency conversion must be applied to
transform the item into the local currency of the com-
pany.

Balances between both companies need to be compared in
order to determine whether there is a surplus or deficit.

The currency conversion must be performed on an item
level and afterward the aggregation value must be dis-
played. As aresult, during the run, a lot of data in tables
has to be touched and the intermediate results can be
quite large

The modeling tool 600 illustrates all calculation nodes 610
of the dunning run which are illustrated in a hierarchical
arrangement. Text versions of these calculation nodes 610 are
displayed as elements 630 in a window 620 within the mod-
eling tool 600. Each of the calculation nodes 610 represents a
database operation (join, projection, aggregation, union,
etc.). Selection of the graphical user interface elements 630
can cause, for example, information relating to the corre-
sponding database operation to be displayed. All together, the
calculation nodes 610 define a data flow starting at bottom at
the calculation nodes 610-A and going up to a root node
610-B at the top.

Ifasingle SQL statement for all of these operations were to
be created, it would be difficult to understand (from a human
perspective) which would make it more prone for human
error. In contrast, with the current calculation scenario, one
can still see the structure of the data flow model and access
each node of the model to display the results.

FIG. 7 is a diagram 700 illustrating a portion of the calcu-
lation nodes 610 illustrated in FIG. 6. In particular, this dia-
gram 700 shows a section of the currency conversion in the
Dunning Run. As illustrated, one node can be used by two or

US 9,311,356 B2

7

three other nodes and such nodes execute additional filters to
select the required data from the incoming node. These filters
handle a typical requirement in the currency conversion pro-
cess because often a value in a special column defines what
type of conversion must be applied to a particular row and
then a totally different data flow must be applied. Such opera-
tions/filters in SQL would require multiplying the same sub
SQL statement for each selection. This requirement can be
difficult, if not impossible, to implement.

FIGS. 6 and 7 demonstrate that if a whole dunning scenario
is expressed in one SQL statement, the currency conversion
would only be useable within that particular scenario. In
contrast, with the current subject matter, logic within calcu-
lation scenarios can be re-used (which allow for an easier
creation of complementary calculation scenarios). For
example, with regard to dunning, a report can be generated
that lists the suppliers for that the own company has open
bills. In such a calculation scenario, currency conversion is
also required so the corresponding logic can be added to the
calculation scenario such that the calculation nodes 610 that
are required for the currency conversion can be re-used.

Various implementations of the subject matter described
herein may be realized in digital electronic circuitry, inte-
grated circuitry, specially designed ASICs (application spe-
cific integrated circuits), computer hardware, firmware, soft-
ware, and/or combinations thereof. These various
implementations may include implementation in one or more
computer programs that are executable and/or interpretable
on a programmable system including at least one program-
mable processor, which may be special or general purpose,
coupled to receive data and instructions from, and to transmit
data and instructions to, a storage system, at least one input
device, and at least one output device.

These computer programs (also known as programs, soft-
ware, software applications or code) include machine instruc-
tions for a programmable processor, and may be implemented
in a high-level procedural and/or object-oriented program-
ming language, and/or in assembly/machine language. As
used herein, the term “machine-readable medium” refers to
any computer program product, apparatus and/or device (e.g.,
magnetic discs, optical disks, memory, Programmable Logic
Devices (PLDs)) used to provide machine instructions and/or
data to a programmable processor, including a machine-read-
able medium that receives machine instructions as a machine-
readable signal. The term “machine-readable signal” refers to
any signal used to provide machine instructions and/or data to
a programmable processor.

To provide for interaction with a user, the subject matter
described herein may be implemented on a computer having
a display device (e.g., a CRT (cathode ray tube) or LCD
(liquid crystal display) monitor) for displaying information to
the user and a keyboard and a pointing device (e.g., a mouse
or a trackball) by which the user may provide input to the
computer. Other kinds of devices may be used to provide for
interaction with a user as well; for example, feedback pro-
vided to the user may be any form of sensory feedback (e.g.,
visual feedback, auditory feedback, or tactile feedback); and
input from the user may be received in any form, including
acoustic, speech, or tactile input.

The subject matter described herein may be implemented
in a computing system that includes a back-end component
(e.g., as a data server), or that includes a middleware compo-
nent (e.g., an application server), or that includes a front-end
component (e.g., a client computer having a graphical user
interface or a Web browser through which a user may interact
with an implementation of the subject matter described
herein), or any combination of such back-end, middleware, or

10

15

20

25

30

35

40

45

50

55

60

65

8

front-end components. The components of the system may be
interconnected by any form or medium of digital data com-
munication (e.g., a communication network). Examples of
communication networks include a local area network
(“LAN"), a wide area network (“WAN”), and the Internet.

The computing system may include clients and servers. A
client and server are generally remote from each other and
typically interact through a communication network. The
relationship of client and server arises by virtue of computer
programs running on the respective computers and having a
client-server relationship to each other.

Although a few variations have been described in detail
above, other modifications are possible. For example, the
logic flow depicted in the accompanying figures and
described herein do not require the particular order shown, or
sequential order, to achieve desirable results. Other embodi-
ments may be within the scope of the following claims.

What is claimed is:
1. A method comprising:
receiving, by a database server from a remote application
server, a select query specifying a calculation scenario,
the specified calculation scenario being one of a plural-
ity of calculation scenarios and defining a data flow
model that includes one or more calculation nodes, each
calculation node defining one or more operations to
execute on the database server to respond to the query, at
least one calculated node defining a calculated attribute;

instantiating, by the database server, the specified calcula-
tion scenario, wherein at least a portion of paths and/or
attributes defined by the specified calculation scenario
are not required to respond to the query, and instantiating
the specified calculation scenario includes omitting the
paths and attributes defined by the specified calculation
scenario that are not required to respond to the query;

executing, by the database server, the operations defined by
the calculation nodes of the instantiated calculation sce-
nario to result in data set responsive to the query; and
providing, by the database server to the application
server, the data set.

2. A method as in claim 1, wherein at least one of the
calculation nodes filters results obtained from the database
server.

3. A method as in claim 1, wherein at least one of the
calculation nodes sorts results obtained from the database
server.

4. A method as in claim 1, wherein the calculation scenario
is instantiated in a calculation engine layer by a calculation
engine.

5. A method as in claim 4, wherein the calculation engine
layer interacts with a physical table pool and a logical layer,
the physical table pool comprising physical tables containing
data to be queried, and the logical layer defining a logical
metamodel joining at least a portion of the physical tables in
the physical table pool.

6. A method as in claim 1, wherein an input for each
calculation node comprises one or more of: a physical index,
a join index, an OLAP index, and another calculation node.

7. A method as in claim 6, wherein each calculation node
has at least one output table that is used to generate the final
result set.

8. A method as in claim 7, wherein at least one calculation
node consumes an output table of another calculation node.

9. A method as in claim 1, wherein the executing com-
prises:

US 9,311,356 B2

9

forwarding the query to a calculation node in the calcula-
tion scenario that is identified as a default node if the
query does not specify a calculation node at which the
query should be executed.

10. A method as in claim 1, wherein the query identifies a
particular calculation node, and wherein the executing com-
prises:

forwarding the query to the calculation node specified in
the query at which the query should be executed.

11. A method as in claim 1, wherein the calculation sce-

nario comprises database metadata.

12. A method as in claim 1, wherein the calculation sce-
nario is exposed as a database calculation view.

13. A method as in claim 12, wherein the executing com-
prises:

invoking, by a SQL processor, a calculation engine to
execute the calculation scenario behind the database
calculation view.

14. A method as in claim 13, wherein the calculation engine

invokes the SQL processor for executing set operations.

15. A method as in claim 14, wherein the SQL processor
invokes the calculation engine when executing SQL queries
with calculation views.

16. A system comprising:

a database server comprising memory and at least one data
processor; and an application server in communication
with and remote from the database server comprising
memory and at least one data processor;

wherein:

the database server receives, from the application server, a
query associated with a calculation scenario, the calcu-
lation scenario being one of a plurality of calculation
scenarios and defining a data flow model that includes
one or more calculation nodes, each calculation node
defining one or more operations to execute on the data-
base server to respond to the query, at least one calcu-
lated node defining a calculated attribute;

the database server instantiates the calculation scenario,
wherein at least a portion of paths and/or attributes
defined by the calculation scenario are not required to
respond to the query, and instantiating the calculation
scenario includes omitting the paths and attributes
defined by the calculation scenario that are not required
to respond to the query;

10

15

20

25

30

35

40

10

the database server executes the operations defined by the
calculation nodes of the instantiated calculation scenario
to result in a data set responsive to the query;

the database server provides the data set to the application

server; and

the calculation scenario being reusable, in whole or in part,

across multiple different queries.
17. A system as in claim 16, wherein there are a plurality of
application servers coupled to the database server.
18. A system as in claim 16, wherein the database server
executes three layers, a calculation engine layer, a logical
layer, and a physical table pool.
19. A non-transitory computer program product storing
instructions, which when executed by at least one data pro-
cessor forming part of at least one computing system, resultin
operations comprising:
receiving data generated by an application server that com-
prises a query that specifies a calculation scenario, the
specified calculation scenario being one of a plurality of
calculation scenarios and defining a data flow model that
includes one or more calculation nodes, each calculation
node defining one or more operations to execute on the
database server to respond to the query, at least one
calculated node defining a calculated attribute;

instantiating the specified calculation scenario in a calcu-
lating engine layer, the calculation engine layer interact-
ing with a physical table pool and a logical layer, the
physical table pool comprising physical tables contain-
ing data to be queried, and the logical layer defining a
logical metamodel joining at least a portion of the physi-
cal tables in the physical table pool, wherein at least a
portion of paths and/or attributes defined by the speci-
fied calculation scenario are not required to respond to
the query, and instantiating the specified calculation sce-
nario includes omitting the paths and attributes defined
by the specified calculation scenario that are not
required to respond to the query;

executing the operations defined by the calculation nodes

of the instantiated calculation scenario to result in a data
set responsive to the query; and

providing the data set to the application server.

#* #* #* #* #*

